

Modified Wave Number Analysis

1. Arbitrary periodic functions can be decomposed into their Fourier components, which are in the form $e^{i\kappa x}$, where κ is the wavenumber. For a general κ

$$u(x) = c_{\kappa} e^{i\kappa x}$$

2. The exact derivative in x

$$\frac{\partial u(x)}{\partial x} = i\kappa c_{\kappa} e^{i\kappa x} = i\kappa u(x)$$

- 3. How will a finite-difference operator δ_x approximate the derivative of $u_j = c_{\kappa} e^{i\kappa x_j}$, $x_j = j\Delta x$
- 4. By definition we have $(i\kappa^*)$ is the modified wave number

$$\delta_x u_j = i\kappa^* c_\kappa e^{i\kappa x} = i\kappa^* u_j$$

5. The particular form of $i\kappa^*$ depends on the choice of δ_x

Modified Wave Number - Central Differencing

1. Central Difference:

$$\delta_x^c \ u_j = \frac{u_{j+1} - u_{j-1}}{2\Delta x}$$

2. Using $u_j = e^{i\kappa j\Delta x}$ we have

$$\delta_x^c u_j = \frac{e^{i\kappa(j+1)\Delta x} - e^{i\kappa(j-1)\Delta x}}{2\Delta x} = \frac{e^{i\kappa\Delta x} - e^{-i\kappa\Delta x}}{2\Delta x} e^{i\kappa j\Delta x} = \frac{e^{i\kappa\Delta x} - e^{-i\kappa\Delta x}}{2\Delta x} u_j = i\kappa_c^* u_j$$

3. Using the definition of the complex exponential $e^{i\kappa\Delta x} = \cos(\kappa\Delta x) + i\sin(\kappa\Delta x)$ we have

$$i\kappa_c^* = i \frac{\sin(\kappa \Delta x)}{\Delta x}$$

- 4. The modified wave number $i\kappa^*$ is an approximation to $i\kappa$ the "exact" wave number.
- 5. For δ_x^c , using the infinite series expansion of $sin(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$

$$i\kappa_c^* = i \frac{\sin(\kappa \Delta x)}{\Delta x} = \frac{i}{\Delta x} \left[(\kappa \Delta x) - \frac{(\kappa \Delta x)^3}{6} + O(\Delta x^5) \right] = i\kappa \left[1 - \frac{(\kappa \Delta x)^2}{6} + O(\Delta x^4) \right]$$

6. Therefore $i\kappa_c^* = i\kappa - i\kappa \frac{(\kappa \Delta x)^2}{6} + O(\Delta x^4) = i\kappa + O(\Delta x^2)$ a second order approximation.

Modified Wave Number - 1st Order Backward Differencing

1. Backward Difference:

$$\delta_x^b \ u_j = \frac{u_j - u_{j-1}}{\Delta x}$$

2. Using $u_j = e^{i\kappa j\Delta x}$ we have

$$\delta_x^b u_j = \frac{e^{i\kappa j\Delta x} - e^{i\kappa(j-1)\Delta x}}{\Delta x} = \frac{1 - e^{-i\kappa\Delta x}}{\Delta x} e^{i\kappa j\Delta x} = \frac{1 - e^{-i\kappa\Delta x}}{\Delta x} u_j = i\kappa_b^* u_j$$

3. Expanding in sin and cos

$$i\kappa_b^* = \frac{1 - \cos(\kappa \Delta x) + i\sin(\kappa \Delta x)}{\Delta x}$$

4. For δ_x^b , using the infinite series expansion of sin(x) and $cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$

$$i\kappa_b^* = \frac{1}{\Delta x} \left[\left[\frac{(\kappa \Delta x)^2}{2} + O(\Delta x^4) \right] + i \left[(\kappa \Delta x) - \frac{(\kappa \Delta x)^3}{6} + O(\Delta x^5) \right] \right]$$
$$= \frac{\kappa^2 \Delta x}{2} + O(\Delta x^3) + i\kappa \left[1 - \frac{(\kappa \Delta x)^2}{6} + O(\Delta x^4) \right]$$

5. Therefore $i\kappa_b^* = i\kappa + O(\Delta x)$ a first order approximation.

Solution to the Discrete PDE

1. The discrete PDE is

$$\frac{\partial u(t)_j}{\partial t} + a\delta_x u(t)_j = 0$$

2. Using separation of variables: $u(t)_j = e^{i\kappa j\Delta x} f(t)$ and applying the general result $\delta_x u_j = i\kappa^* u_j$

$$\frac{\partial e^{i\kappa j\Delta x} f(t)}{\partial t} + ai\kappa^* e^{i\kappa j\Delta x} f(t) = 0$$

3. The ODE for f(t) is $\frac{\partial f(t)}{\partial t} + af(t)i\kappa^* = 0$ with solution $f(t) = f(0)e^{-ai\kappa^* t}$ giving

$$u(t)_j = c_{\kappa} e^{i\kappa j\Delta x} e^{-ai\kappa^* t}, \quad c_{\kappa} = f(0)$$

4. Comparing this discrete solution with the continuous solution

$$u(x,t) = c_{\kappa} e^{i\kappa x} e^{-ai\kappa t}$$

we can see how the choice of δ_x affects the phase and amplitude of the computed solution.

Effect of Modified Wave

1. For central differencing $i\kappa_c^* = i\kappa - i\kappa \frac{(\kappa \Delta x)^2}{6} + O(\Delta x^4)$, plugging it into the discrete solution gives

$$u(t)_{j} = c_{\kappa} e^{i\kappa j\Delta x} e^{-ai\kappa - i\kappa \frac{(\kappa\Delta x)^{2}}{6} + O(\Delta x^{4})t} = c_{\kappa} e^{i\kappa j\Delta x} e^{-ai\kappa \left[1 - \frac{(\kappa\Delta x)^{2}}{6} + O(\Delta x^{4})\right]t}$$

2. Dropping the $O(\Delta x^4)$ term and defining $a^* = a \left[1 - \frac{(\kappa \Delta x)^2}{6}\right]$ the modified wave speed

$$u(t)_j = c_{\kappa} e^{i\kappa j\Delta x} e^{-a^* i\kappa t}$$

as the discrete solution using central differencing.

- 3. This shows that each wave slows down by $\frac{(\kappa \Delta x)^2}{6}$ which is a function of κ .
- 4. Following the same reasoning for the backward differencing $i\kappa_b^*$

$$u(t)_{j} = c_{\kappa} e^{i\kappa j\Delta x} e^{-a\left[\frac{\kappa^{2}\Delta x}{2} + i\kappa\left[1 - \frac{(\kappa\Delta x)^{2}}{6}\right]\right]t}$$

slowing down the waves and also damping them by $\frac{\kappa^2 \Delta x}{2}$

5. We can characterize the error by plotting $\kappa^* \Delta x$ against $\kappa \Delta x$